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We study vacancy diffusion on the classical triangular-lattice dimer model, subject to the kinetic constraint
that dimers can only translate, but not rotate. A single vacancy, i.e., a monomer, in an otherwise fully packed
lattice, is always localized in a treelike structure. The distribution of tree sizes is asymptotically exponential
and has an average of 8.16�0.01 sites. A connected pair of monomers has a finite probability of being
delocalized. When delocalized, the diffusion of monomers is anomalous: �x�2�� t�, with �=0.46�0.06. We also
find that the same exponent � governs diffusion of clusters of three or four monomers, as well as the diffusion
of dimers at finite but low monomer densities. We argue that coordinated motion of monomer pairs is the basic
mechanism allowing large-scale transport at low monomer densities. We further identify a “swap-tunneling”
mechanism for diffusion of monomer pairs, where a subtle interplay between swap moves �translations of
dimers transverse to their axes� and glide moves �translations of dimers parallel to their axes� plays an essential
role.
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I. INTRODUCTION

The statistical mechanics of the lattice dimer model has a
long and venerable history �1,2�. It is one of the earliest
prototypical lattice models where hard constraints play an
essential role and that has interesting and deep connections
with the Ising model and various kinds of lattice gauge theo-
ries �3�. It has been extensively studied in the setting of
random sequential adsorption processes, both reversible and
irreversible �4�. More recently, interests in dimer models
have been further boosted by their relevance to the resonance
valence bond theory of high-Tc superconductivity �5,6�.

The equilibrium physics of lattice dimer models is already
well understood. The partition function of fully packed
dimers on any planar lattice can be exactly computed using
the Pfaffian method, following a theorem of Kasteleyn
�7–11�. The case with a nonzero monomer fraction proves to
be more difficult and interesting. Both analytic techniques
and numerical simulations have been used to attack this
problem �12,13�. Previous studies of two-dimensional equi-
librium dimer models seem to suggest two universality
classes �13�. For bipartite lattices, monomers on different
sublattices behave as positive or negative charges, interacting
with a logarithmic Coulomb potential of entropic origin. The
physics of a finite monomer density system is, therefore, well
described by the Debye-Huckle theory of a two-dimensional
�2D� plasma. For nonbipartite lattices, however, the mono-
mers behave as a weakly interacting gas with extremely
short-range correlations. This distinction between bipartite
and nonbipartite lattices seems to persist even in three di-
mensions �14�.

Appropriately defined dynamics of dimers may describe
the structural rearrangement in dense anisotropic granular or
glassy systems. Furthermore, the fact that the equilibrium
physics of the dimer model is well understood makes it par-
ticularly convenient for a dynamic study. The similarities
between glasses and dense granular systems have long been
recognized and explored. Furthermore, recent theoretical

studies on the glassy dynamics of lattice models with point-
like particles, such as the Kob-Anderson model �15–17� and
other more exotic models �18–20�, have revealed deep con-
nections between kinetic constraints and glassy dynamics, as
well as new mechanisms of ergodicity breaking in lattice
systems.1 It is therefore interesting to explore how kinetic
constraints affect the diffusion of dimers as well as vacancies
in the dimer model. Two studies of single-monomer diffusion
in an otherwise fully occupied square lattice have been
published recently �21,22�. Here we focus on the two-
dimensional triangular lattice, and study diffusion of both
single-monomer and monomer clusters.

Model and summary of results

Our main goal is to characterize, both qualitatively and
quantitatively, the diffusion of vacancies, i.e., monomers, in
a densely packed lattice dimer model, when the dynamics are
subject to hard-core repulsion, as well as to various kinetic
constraints. We allow only single-dimer moves that do not
cause double occupation at any site at any time. This natu-
rally excludes two-dimer dynamics such as those considered
in the context of quantum dimer models. Therefore no dimer
can move in a fully packed triangular lattice; i.e., the system
is completely jammed.

A dimer can move only when there are one or more va-
cancies, i.e., monomers, in its immediate neighborhood.
When a dimer has only one nearest monomer, there are two
kinds of moves that we could allow: moves in which the
dimer changes its orientation as well as its position, which
we call a rotation, or moves in which it simply translates
along its axis, which we call a glide �see Figs. 1�a�–1�c��. If
both rotations and glides of dimers are allowed, a monomer
can always move in any of the six possible directions. There-
fore, a single monomer in an otherwise fully occupied trian-

1This ergodicity-breaking transition is believed to become a cross-
over in a continuous space model.
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gular lattice simply performs a random walk. At finite mono-
mer density, all monomers simply behave as weakly
interacting gas molecules. The dimer diffusion constant
scales linearly with the monomer density �m. Such a scenario
is clearly uninteresting.

We shall therefore forbid rotations of dimers from now
on.2 Given an isolated monomer, if there is a nearest dimer
with its axis pointing toward the monomer, as shown in Fig.
1�c�, the dimer can glide into the monomer site. In this case,
the monomer moves along one of the three crystal axes by
two lattice steps. Therefore, with glide moves a monomer
can only move on one of the four sublattices of the triangular
lattice, shown in Fig. 2. Furthermore, we shall prove in Sec.
III that a monomer can never return to its initial lattice site
from a different direction from the one in which it left.
Therefore all lattice sites reachable by an isolated monomer
form a treelike structure, which we shall call a monomer tree.
Both back-of-the-envelope calculations and numerical simu-
lations indicate that monomer tree sizes are always finite.
The distribution of the monomer tree size is asymptotically
exponential, as illustrated in Fig. 8 below, with an average of
8.16�0.01 sites. We thus expect that single-monomer moves
do not contribute to the large-scale transport of dimers at
high packing density. Consequently, some other collective
mechanism is needed for the diffusion of dimers over large
length scales.

Now let us consider two monomers that are nearest neigh-
bors to each other.3 We allow nearby dimers to translate
transverse to their axes and occupy the lattice sites of two
monomers, as illustrated in Fig. 1�d�. Such a dimer move
will be called a swap. Swap moves provide a mechanism for
changing the monomer tree structures, which is essential for
large-scale transport in the triangular-lattice dimer model in
the high-packing-density regime. Nevertheless, glide moves
separate monomer pairs that are nearest neighbors to each
other, and make swap moves unavailable. Once separated,
two monomers can form a nearest neighbor pair again only
at one or more particular pairs of sites. These reconnection
events are clearly suppressed by entropic barriers. We there-

fore have the following qualitative picture for the diffusion
of a two-monomer cluster. Each monomer may diffuse on its
individual monomer tree, via glide of dimers. This move is
entropically preferred, but does not contribute to the large-
scale transport of monomers or dimers. Only occasionally do
the two monomers meet neighboring sites, whereupon they
may be able to travel together by a swap move. Each mono-
mer then discovers a new monomer tree on which it can
diffuse.

One might suspect that two-monomer clusters can diffuse
faster if we altogether forbid glide moves of dimers. This
turns out, however, not to be true. Let us first define a swap
cluster in a fully packed lattice as the maximal subset of
dimers that have the same orientation, such that if any of
these dimers is removed, the resulting connected monomer
pair can visit the place of any other dimer in the same cluster
by swap moves or double-glide moves, i.e., swap moves or
two consecutive glide moves along the same direction. An
example of a swap cluster is shown in Fig. 3. We have
checked numerically that in the equilibrium ensemble all
swap clusters are finite. As shown in Fig. 4, the distribution
of swap cluster sizes is exponential, on average covering
17.89�0.02 sites. This behavior is of course in qualitative
agreement with the extremely short-range correlations exhib-
ited by the equilibrium ensemble of the triangular lattice
dimer model.

Now if we create a two-monomer cluster by removing a
dimer inside a swap cluster, and allow only swap and double-
glide moves, by definition the monomer pair can only visit
all the sites of the swap cluster—all sites that are reachable
by swap or double-glide move belong to the same swap clus-
ter. That is, the monomer pair is localized if dimer glides are
not allowed. Without assistance from other monomers, a
monomer pair can escape from a swap cluster only by one
mechanism: Two monomers may “tunnel” through their in-

2The forbidding of rotational degrees of freedom may also be
relevant to the glassy physics of anisotropic liquids. It has been
widely recognized �23–26�, for example, that rotational relaxation
becomes much slower than translational relaxation near the glass
transition. It is therefore possible that suppression of rotational mo-
tion results in glassy dynamics.

3If two monomers cannot become nearest neighbors to each other
by glide moves, they simply behave as two independent and iso-
lated monomers, which do not contribute to the large-scale diffu-
sion of dimers.
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FIG. 1. �Color online� Types of dimer moves. �a� and �b� are
rotations, and are not allowed in our model. �c� shows a glide move
and �d� a swap move.
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FIG. 2. The four sublattices in the dimer model.
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FIG. 3. �Color online� A swap cluster. If a two-monomer cluster
is created by removing one dimer inside this swap cluster, it can
reach all sites in the swap cluster by swap or double-glide moves of
dimers.
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dividual monomer trees by glide moves and rejoin each other
inside some other swap cluster. A configuration in which
such tunneling is possible is shown in Fig. 5. Another con-
figuration in which such tunneling is not possible �without
first carrying out a swap move� is shown in Fig. 6. We there-
fore deduce that both glide and swap moves are essential for
large-scale diffusion of monomers.

The probability that a monomer pair can escape from a
swap cluster depends on the details of dimer packing around
the monomer pair. It is not a priori clear whether a monomer
pair can diffuse around the whole system by this mechanism.
We have run extensive simulations of the diffusion of mono-
mers, and found numerical evidence which shows that, when
randomly prepared, a finite fraction �about 20%� of monomer
pairs are localized, while the remaining fraction can diffuse
to infinity. We have also simulated monomer clusters consist-
ing of three or four monomers, and found they are almost
always delocalized. Furthermore, we found that in all these
cases the monomer diffusion is anomalous, with an exponent
of 0.46�0.05. We are, however, not able to find a quantita-
tive understanding of this diffusion law. Finally, we have also
simulated diffusion of dimers at finite but low monomer den-
sities, and discovered also the same anomalous diffusion ex-

ponent �0.47. This anomalous diffusion of dimers can be
understood in terms of diffusion of monomer pairs.

The remainder of this paper is organized as follows. In
Sec. II we discuss some details of the model and the numeri-
cal method we used in our simulations. In Sec. III we study
the diffusion �localization� of a single monomer in an other-
wise fully packed lattice. In Sec. IV we present the results on
the localization and delocalization of clusters of two, three,
or more monomers. In Sec. V we analyze the anomalously
slow diffusion of monomers, as well as the statistics of
monomer pair reconnection events. In Sec. VI we look at the
diffusion of dimers in states with finite monomer density.

II. SIMULATION METHODS

To prepare the appropriate initial random state of an L
�L triangular lattice packed with dimers, with periodic
boundary conditions, we use the pocket algorithm
�13,27,28�. If we want a configuration with an even number
of monomers, we start with a fully packed and fully ordered
state �all dimers in the same direction� on an even-by-even
lattice; for a configuration with an odd number of monomers,
we start with an odd-by-odd lattice that has only one mono-
mer, and that is as nearly fully ordered as possible. We then
randomize the state with the pocket algorithm �13,27,28�.
This algorithm is ergodic, and satisfies detailed balance with
respect to the trivially flat measure in configuration space.
Each iteration of the algorithm rearranges a large number of
dimers, so that the system quickly reaches a random state. A
large number of pivots �5L2� are carried out to ensure reach-
ing equilibrium. After that, a smaller number of pivots �10L�
are successively applied to produce other independent ran-
dom states. It is already known that these random states have
only short-range correlations in the dimer orientations
�12,13�.
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FIG. 4. �Color online� Probability distribution of swap cluster
sizes. The x axis measures the number of sites in the swap cluster.

FIG. 5. �Color online� A configuration in which two monomer
trees touch at a position outside their original swap cluster. The
monomer pair starting from the bottom left swap cluster can “tun-
nel” to the other swap cluster on the top right �to the sites enclosed
by the brown circle�. The initial and final swap clusters are indi-
cated by the dimers filled with �red� hatched lines. The dark �blue�
dimers and the small, light �pink� dots indicate the monomer trees
of the individual monomers �see Sec. III�.

FIG. 6. �Color online� A configuration in which two monomer
trees touch only at the original positions �two black dots� of the
monomers. For this monomer pair to move large distances, the
monomers have to meet each other at the two black dots �a recon-
nection event� and then swap to another location in the swap cluster.
The swap cluster is indicated by the dimers filled with �red� hatched
lines. The dark �blue� dimers and the small, light �pink� dots indi-
cate the monomer trees of the individual monomers �see Sec. III�.
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Given a fully packed state �on an even-by-even lattice� or
a one-monomer state �on an odd-by-odd lattice�, we then
generate states with more monomers by removing dimers.
When generating states with three or four monomers, we
remove dimers adjacent to the already existing monomers, to
create larger monomer clusters.

As stated earlier, in this model dimers can make both
glide and swap moves �Figs. 1�c� and 1�d��. Once we have an
initial state, we carry out these moves. We set the time scale
such that, on average, over every unit of time, every dimer
attempts one move, choosing at random one of the six pos-
sible directions available to it. The attempted move is carried
out if and only if it satisfies the hard-core constraint; for a
glide move, the site the dimer is moving into needs to be
vacant, while for a swap move, both of the sites need to be
vacant.

Since we are looking at configurations with low numbers
of monomers, generating trial moves by picking among the
dimers at random is inefficient. We therefore use the follow-
ing equivalent, but more efficient algorithm. If we have N
monomers, then at every step we advance the time by 1 /N
and pick a random monomer and a random site adjacent to
that monomer. If the adjacent site is occupied by a dimer that
can move into the monomer with a glide move, we do this. If
the adjacent site is occupied by a dimer that can move into
the monomer with a swap move, we do this with probability
1 /2. This generates moves with the same probabilities as if
we instead chose random dimers.

III. DYNAMICS OF SINGLE MONOMER

We first consider configurations with only a single mono-
mer. With only one monomer in the system, swap moves can
never occur; only glide moves are allowed. With every glide
move, the monomer moves two spaces, so the monomer is
confined to one of four sublattices—see Fig. 2. This in turn
means that a dimer cannot make two glide moves in the same
direction—that is, make a glide move in a direction and then,
after some moves of other dimers, make a second glide move
in the same direction—because it would then be moving into
vacancies of different sublattices in the two steps, contradict-
ing the result that the monomer remains on the same sublat-
tice. This means that with only a single monomer a dimer is
confined to either moving back and forth between two posi-
tions, or not moving at all.

This in turn means that, for configurations with a single
monomer, the latter can never move in a loop �come back to
its original lattice site from a different direction than the one
in which it left�. Since dimers can only carry out “back and
forth” moves, after the monomer leaves its original site by
moving a certain dimer, it can only return to its original site
from the direction it left in by moving the same dimer back
to its original position.

This means that for a state with a single monomer, it is
easy to quickly figure out which sites the monomer can
reach, without explicitly carrying out the dimer moves. We
can first see which sites a monomer can reach with a single
glide move by inspecting the orientation of dimers on adja-
cent sites. If a dimer on a neighboring site points toward the

monomer, then it can make a glide move into the monomer.
Once the monomer makes a single move, it can either move
back in the direction that it came from, or make a new move.
We can determine what new moves are possible by the same
process as before, and thus construct the set of sites that the
monomer can reach by repeated glide moves. Since the
monomer can never move in a loop, the set of sites that the
monomer can reach forms a static tree, such as the one
shown in Fig. 7. An isolated monomer thus performs a ran-
dom walk on its tree.

Our numerical simulations find that large monomer trees
are exponentially suppressed. Figure 8 shows the distribution
of monomer trees sizes for 105 configurations on a 101
�101 lattice. We stress that, for a given configuration, this
procedure determines exactly the number of sites that the
monomer can visit, so that the distribution in Fig. 8 is exact,
up to statistical errors. The average monomer tree size is
8.16�0.01 sites, and the distribution decays exponentially
for large tree sizes, as exp�−0.064s� �where s is the tree size�.
This implies that, in a lattice of infinite size, a single mono-
mer is always localized. At low but finite monomer density, a
collective mechanism involving more than one monomer is
therefore needed for diffusion of dimers at large length and
time scales. This result should be contrasted with a recent
similar analysis for the dimer model on the square lattice,
which found that single monomers are only weakly local-
ized, having a power law distribution with a diverging ex-
pectation value for the number of accessible sites �21�.

The exponential localization and average monomer tree
size on the triangular lattice can be understood by the fol-
lowing heuristic argument. For a configuration with a single
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FIG. 7. �Color online� A monomer tree. The dark �blue� dimers
can eventually move, and the small, light �pink� dots show the sites
that the monomer can reach.

25 50 75 100 125 150
s

�6

�5

�4

�3

�2

�1

log10p�s�

FIG. 8. �Color online� Distribution of monomer tree sizes �the
number of sites s a single monomer can reach� in a 101�101 lattice
with a single vacancy.
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monomer, we look at all the sites in the same sublattice as
the monomer. For the six next-nearest-neighbor sites in the
same sublattice �sites A1–A6 in Fig. 9�, we assume that the
dimers on those sites each have an independent probability
1 /6 of pointing in any of the six possible directions. This
assumption should be fairly good, given the extremely short
correlation length of dimer orientations in a fully packed
triangular lattice �13�. For each of those sites, if the mono-
mer can reach that site, there are five more sites further out
�for example, in Fig. 9, the site A3 has neighbors B1–B5�,
each of which we assume has an independent 1 /6 probability
of being reachable.4 Continuing outward, if we treat the dif-
ferent branches and orientation probabilities as independent,
we have site percolation on a Cayley tree, with coordination
number z=6 and site occupation probability p=1 /6. In this
Cayley tree, the average tree size is 7, which agrees surpris-
ingly well with our numerical result of 8.16�0.01. Since
cluster sizes for site percolation below the critical point on
the Cayley tree are exponentially distributed, our heuristic
argument also correctly predicts that large monomer trees are
exponentially suppressed.

IV. LOCALIZATION OF MONOMER CLUSTERS

Let us define a monomer cluster to be localized, or con-
fined, if the monomers can only reach a finite number of sites
of the system, and delocalized, or deconfined, if some of
them can reach an infinite number of sites. Our analysis in
the preceding section already shows that single monomers
are always localized. In this section, we shall study clusters
of monomers.

A. Localization with two monomers

A pair of nearest neighbor monomers can sometimes be
localized. For example, in Fig. 10, we show a configuration
in which the two monomers can reach only a finite number
of sites. It is clear that these two monomers are on a swap
cluster �defined in Sec. I� that contains only two sites. Hence

there is no swap move available. Furthermore, it is easy to
check that the monomer trees of two monomers touch each
other only at the current position of monomers. Each mono-
mer is thus necessarily localized on their individual tree.

Our numerical simulations indicate that localization of a
monomer pair happens only in roughly one-fourth of the
configurations. In contrast to the single-monomer case, how-
ever, there is no simple algorithm for determining if a pair of
monomers is localized, because the move of one monomer
can change the monomer tree of the other, as well as the
configuration of swap clusters. Very often, the two mono-
mers appear to be trapped in a region for a long period of
time, but after even longer times, the pair finds a way to
break out of the region. Additionally, it is also possible that
monomer pairs that appear delocalized for a given system
size, would in fact be localized, if we considered the system
as a subset of an even larger lattice.

We keep track of how many sites have had their occupa-
tion changed by a certain time—i.e., the dimer that initially
covered the site moved at least once.5 We say that a configu-
ration of monomers “appears” localized in a region of size s
at time t if the number of sites whose occupation has
changed is less than or equal to s. By creating many random
configurations, each with one removed dimer, and running
each up to time t, we obtain the probability ps�t� that a given
configuration with a monomer pair is localized within size s
at time t, for any s. By definition, for a given t, ps�t� is a
monotonically increasing function of s with lims→�ps�t�=1.
In the limit t→�, ps�t� approaches the probability that a
configuration is truly localized within size s.

In Fig. 11 we show, for a system of size L=100 with one
monomer pair, ps�t� as a function of t, for different values of
s. It is clear that each curve asymptotes to a nonzero value in
the infinite-time limit. This indicates that at least a finite
fraction of monomer pairs are confined. The asymptotic
value ps�t→�� increases appreciably with s, showing that
monomer pairs have a broad range of localization sizes.

The derivative of ps�t� with respect to s, �d /ds�ps�t�, by
definition, is the probability that at time t, the number of sites4The probabilities are not truly independent, both because there

are short-range orientational correlations, and because the different
branches overlap �e.g., A2=B1�. We emphasize that this is only a
rough estimate.

5Even though the site may be covered by the same dimer in the
same way in both the initial and the final states.
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FIG. 9. �Color online� Estimate of monomer tree size. We con-
sider only the dimers on sites in the same sublattice as the mono-
mer. The dimers drawn are smaller than their actual size in this
picture. The blue dimers are movable. The pink dots denote the sites
reachable by the monomer �i.e., the monomer tree�.

FIG. 10. �Color online� A configuration in which two adjacent
monomers are confined. The small light �pink� dots denote sites that
can be reached by the monomers.

VACANCY DIFFUSION IN THE TRIANGULAR-LATTICE… PHYSICAL REVIEW E 78, 021112 �2008�

021112-5



moved is exactly s. In Fig. 12 this probability is plotted as a
function of s, at two different times. The red curve is at t
=105.67 and the blue curve is at t=106, again for a system of
size L=100. It is clear that both curves contain two well-
separated peaks, a sharp and narrow peak at small s, and a
secondary, wide peak at a larger value of s. The narrow peak
at small s does not change with time, implying that the cor-
responding configurations are indeed localized. By contrast,
the wider secondary peak moves outward with time, suggest-
ing that the corresponding configurations are actually delo-
calized.

While Fig. 12 suggests that there are delocalized states, it
is difficult to precisely numerically determine the fraction of
configurations that are delocalized. This is because, as al-
ready stated, localization is defined in the limit of infinite
system sizes and infinite times. Any numerical definition of
localization, however, needs to impose arbitrary cutoffs and
criteria. For a 240�240 system, we simulated the system for
t=106, and numerically defined a state as localized if both
the monomers reached no new sites from time t=105 to 106,
and less than half of all sites had their occupation change.
With this numerical definition, we found that �21.5�1.3�%
of the states are localized. This fraction varied as we changed
the cutoffs and system size, ranging from 20% to 25%.

Since monomer trees are always of finite size, two mono-
mers in a pair �nearest neighbors in the initial state� cannot
be widely separated. In equilibrium, their separation should
be proportional to the linear size of monomer trees. In Fig.
13, we see the average monomer-monomer separation as a
function of time for a system with two monomers. While the

horizontal axis spans six decades of time, the average
monomer-monomer separation asymptotes at roughly 6 lat-
tice spacings by t=104. This verifies that monomer pairs are
indeed bound. The asymptotic value of 6 lattice spacings is
consistent with the average monomer tree size, and does not
change as we vary the system size. This result confirms the
mechanism presented in Sec. I: A pair of monomers can dif-
fuse only through a two-monomer collective moves, which
involves both swap and glide moves.

While we have not rigorously proven that monomer-pair
localization actually happens on infinite lattices with finite
probability, our numerical results presented above and in
later sections strongly suggest that it is the case. On the other
hand, it turns out that the dimer system with only one dimer
pair is never ergodic with the constraint of no rotation. There
are three orientations of dimers: horizontal, northeastern, and
northwestern. The orientation of each dimer is conserved by
the dynamics, so the number of dimers with each orientation
does not change over time.

Furthermore, it turns out that the system is not even er-
godic within a sector with numbers of dimers of each orien-
tation fixed, Recall that the system with L even can be di-
vided into four sublattices—see Fig. 2—and that glide moves
leave a monomer in the same sub-lattice. Suppose, without
loss of generality, that the removed dimer is horizontal, with
one monomer in sublattice A, and the other in sublattice B.
Subsequent glide moves will leave the monomers in their
sublattices. Therefore, wherever the monomers reconnect to
one other, they will still form a missing dimer of horizontal
orientation. Hence the only possible swap move is to move a
horizontal dimer, putting the monomers in sublattices C and
D, respectively �again, see Fig. 2�. Likewise, monomers in
sublattices C and D can also only form missing horizontal
dimers. Therefore the dynamics never allow a swap move of
a nonhorizontal dimer—such dimers can only undergo glide
moves. It then follows that, along every northeast �north-
west� lattice line, the number of northeast-oriented
�northwest-oriented� dimers is conserved. For a system with
linear size L, this means a total of 2L conserved quantities.

B. Localization with three or more monomers

The analogs of Figs. 11 and 12 for the three monomer
case are shown in Figs. 14 and 15. In Fig. 14, we see that the
percentage of states confined in a region of size s appears to
go to zero as t→� for any s. And in Fig. 15, there is no
noticeable localized peak. So the numerical simulations seem
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FIG. 11. �Color online� Fraction of two-monomer configurations
that “appear” to be confined within regions of size s as a function of
time. The curves are for increasing s from left to right. The system
size is L=100.
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FIG. 12. �Color online� Probability that exactly s sites have
moved at a given time t, for system size L=100, and two mono-
mers. This is �d /ds�ps�t�, where ps�t� is shown in Fig. 11. The two
curves are for the times t=105.67 and 106, and lie on top of each
other for s	200.
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FIG. 13. �Color online� Average separation of a monomer-
monomer pair in an otherwise fully packed lattice with L=240. This
result is insensitive to system size.
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to indicate that all states with three connected monomers are
delocalized.

It is actually possible, however, for clusters with arbitrary
numbers of monomers to be localized. Two such examples
for three-monomer clusters are shown in Figs. 16 and 17.
Fig. 18 shows the bottom half of a configuration in which a
four-monomer cluster is confined �the undisplayed top half is
identical to the bottom half, up to a rotation of 180°�. The
latter configuration can be generalized in a straightforward
way to arbitrary numbers of monomers in a straight line. In
equilibrium, however, localized configurations with three or
more connected monomers appear with extremely small
�nevertheless remains finite for L→�� probability, and are
actually never seen in our simulations. Visual inspection of
the dimer dynamics confirms that configurations with a
three-monomer cluster are always delocalized in practice.

V. ANOMALOUS DIFFUSION OF MONOMERS

Our analysis in the preceding section shows that a single
monomer is always localized, while two- or three-monomer
clusters have a finite probability to be delocalized. In this
section, we shall characterize the diffusion of these delocal-
ized monomer clusters.

A. Diffusion of monomer clusters

Our analysis in the preceding section shows that about
20–25% of two monomer pairs are localized. We are inter-
ested in the diffusion behavior of the delocalized monomer
pairs. Unfortunately in numerical simulations, it is difficult

to reliably distinguish delocalized cases from localized ones.
To avoid this difficulty and obtain better numerical results,
we primarily simulated diffusion of three monomer clusters.

We consider the diffusion of monomers with an initial
3-monomer cluster in a system of size L=501. The result is
shown in Fig. 19. We averaged over 1500 independent
samples, running each sample for time t=108.2. This simula-
tion took seven days on a computer with a 2.0 GHz proces-
sor. We observed anomalously slow diffusion of monomers,
with the average displacement square �x�2� scaling as

�x�2� � t�, � = 0.46 � 0.06. �1�

The data in Fig. 19 show some deviation from pure power
law behavior, but the behavior is clearly subdiffusive over
seven decades of time. The error bar in � is obtained from
the variations in the slope over different time ranges. Simu-
lations with four monomers give a similar curve, with a simi-
lar exponent ��=0.44�0.04�, as do shorter simulations with
two monomers.

The initial configurations are prepared by starting with an
equilibrium state that is either fully packed, or contains only
one vacancy, and then removing random adjacent dimers to
form a connected hole. While the fully packed configuration
is in equilibrium, however, the configuration generated by
the removals is not, as we can see by looking at the average
monomer tree size. The monomer tree construction is most
useful for a configuration with a single monomer, but we can
still define monomer trees for a configuration with multiple
monomers, by determining for each monomer the set of sites
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FIG. 14. �Color online� Fraction of three-monomer configura-
tions that appear to be confined, as a function of time, in regions of
size s. The curves are for increasing s from left to right. The system
size is L=100.
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FIG. 15. �Color online� Probability that exactly s sites have
moved at a given time t, for system size L=100, and three mono-
mers. This is �d /ds�ps�t�, where ps�t� is shown in Fig. 14. The two
curves are for the times t=105.67 and 106.

FIG. 16. �Color online� A configuration in which three con-
nected monomers are confined. The small light �pink� dots denote
sites that can be reached by the monomers.

FIG. 17. �Color online� A configuration in which three con-
nected monomers are confined. The small light �pink� dots denote
sites that can be reached by the monomers.
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reachable by glide moves, while holding all other monomers
fixed. These trees give a rough characterization of the space
available to each monomer, but no longer tell us which sites
a monomer can ultimately reach, both because they neglect
swap moves, and because each monomer’s moves may
change the trees of the other monomers.

In Fig. 20, we see that for a configuration with three
monomers, the average tree size grows very slowly �logarith-
mically� with time, before asymptoting to a roughly constant
value. This shows that it takes some time for our initial con-
figuration to reach an equilibrium. The average monomer
tree sizes grow in a similar fashion for configurations with
two or four monomers.

To understand how monomer clusters can diffuse at long
length scales, let us first consider a configuration with two
monomers that are nearest neighbors, such as the configura-
tions shown in Figs. 5 and 6. Numerical simulations show
that the individual monomer trees are exponentially distrib-
uted, even for configurations with multiple monomers.
Hence, glide moves alone are not sufficient to allow a mono-
mer pair to diffuse.

On the other hand, if we prohibit single-glide moves and
allow only swap moves and double-glide moves �including
the latter since they leave the monomers connected�, then
monomer pairs are always confined to their swap cluster �de-
fined in Sec. I�. Numerical simulations show that the swap
cluster is also exponentially distributed, with an average of
17.89�0.02 sites—the distribution is shown in Fig. 4.

Therefore, swap moves alone are also not sufficient to allow
a monomer pair to diffuse. Hence both glide and swap moves
are essential to large-scale diffusion of monomer clusters.

For a two-monomer configuration, such as shown in Figs.
5 and 6, the two monomers can either glide separately along
their individual monomer trees, or move together by swap
moves. It is clear, however, that immediately after a glide
move takes place, the two monomers stop neighboring each
other and swap moves are no longer possible. Subsequently,
the two monomers perform separate random walks on their
own monomer trees, much like isolated monomers in an oth-
erwise fully packed lattice. This situation remains true so
long as two monomers do not become nearest neighbors, an
event which we shall call “reconnection of a monomer pair.”
For large monomer trees, the probability of a reconnection at
any given time is small. After reconnecting, a swap move
necessarily changes the structure of the monomer trees. The
monomer can then perform random walks in their new
monomer trees, until they eventually reconnect again. It is
clear from this picture that for most of the time steps, the two
monomers remain separated, performing random walks on
their individual trees. A monomer pair has to overcome en-
tropic barriers �the logarithm of monomer tree sizes� in order
to reconnect and perform swap moves. This entropic barrier
partially explains the slow diffusion seen in the simulations.

There are two possible ways that two monomers can re-
connect. �a� If the two monomer trees touch each other only
in one place, as in Fig. 6, then the only way for two mono-
mers to reconnect is for each of them, at exactly the same
time, to go back to the original sites where they separated.
After reconnecting, they then with finite probability perform
swap moves, changing the monomer trees. The two mono-
mers then may separate again and perform random walks in
their new trees. �b� If two monomer trees touch at more than
one place �multiple junctions�, as shown in Fig. 5, then the
two monomers may reconnect if they arrive at any of these
places simultaneously. Here the most interesting possibility
is that two monomers may reconnect inside a swap cluster
different from the one they started with. This possibility pro-
vides a mechanism for a monomer pair to “tunnel” between
different swap clusters, not unlike a Cooper pair tunneling
between neighboring superconducting grains.

A monomer pair would be able to diffuse at large length
and time scales only if these tunneling events happen with
sufficiently high probability. To characterize this probability,
we start from a random fully packed configuration, remove a
single dimer randomly, and numerically check the number of
reconnection sites, i.e., the number of contacts between two
monomer trees. We find that �38.7�0.1�% of the time, the

FIG. 18. �Color online� Bottom half of a configuration in which
four connected monomers in a line are confined. The omitted top
half is identical to the bottom half below the four monomers, but
rotated 180°. The small light �pink� dots denote sites that can be
reached by the monomers.
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FIG. 19. �Color online� Monomer diffusion at large times.
�L=501, three monomers.�
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FIG. 20. �Color online� Growth of the average monomer tree
size at large times. �L=501, three monomers.�
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two monomer trees touch only at the original locations of the
monomers �as in Fig. 6�, while �36.0�0.1�% of the time
there is another location where the monomers can meet.
However, the quantitative relation between these probabili-
ties and the diffusion behavior of monomers is not easy to
obtain.

This swap-tunneling mechanism is responsible for two-
monomer diffusion, but it is unclear whether this mechanism
is also responsible for monomer diffusion in a system at low
monomer density. To explore this issue, we have also simu-
lated the diffusion of larger monomer clusters. Visual inspec-
tion of the diffusion dynamics shows the following. �1� For a
three-monomer cluster, most of the time two monomers re-
main relatively close to each other and are mutually con-
nected by glide moves, while the third one is very often far
away. Furthermore, a three-monomer cluster is always local-
ized if no swap moves are allowed, or if glide moves are not
allowed. Therefore it appears that the two-monomer swap-
tunneling dynamics dominates the diffusion of a three-
monomer cluster. �2� Our numerical simulations clearly
show that monomer clusters of six or fewer connected mono-
mers are localized if swap moves are prohibited. This
strongly suggest the importance of swap move in large-scale
diffusion of monomer clusters. �3� Four-monomer clusters
can be delocalized even if glide moves are disallowed, show-
ing that swap moves alone provide a mechanism for mono-
mer diffusion at low monomer density. However, visual in-
spection of the simulations shows that when both swap and
glide moves are allowed, larger clusters of �four or more�
monomers tend to separate into smaller clusters containing
one or two monomers. This separation is entropically favor-
able: There are many more possible glide moves than pos-
sible swap moves. More importantly, it shows that the swap-
tunneling mechanism of two-monomer clusters is indeed the
most important mechanism for the large-scale transport of
monomers at high packing densities. This conclusion is also
supported by our study of dimer diffusion at low but finite
monomer density, discussed in Sec. VI.

B. Reconnection times

The argument of the preceding section indicates that, in
order for a monomer pair to diffuse, it is essential for the two
monomers to reconnect in a different swap cluster. We now
study the distribution of time separations between successive
reconnection events for pairs of monomers in more detail.
Let us first define precisely reconnection events for configu-
rations with only two monomers. Suppose that at time ti the
two monomers are on neighboring sites. We identify their
swap cluster, and then allow the system to evolve. We say
that a reconnection event happens at time ti+1 if at this time
step the two monomers lie on neighboring sites in a different
swap cluster than at time ti. We define the time difference

i� ti+1− ti as the reconnection time. We then recalculate the
new swap cluster of the monomer pair, and repeat the pro-
cess. To make sure that we study the equilibrium properties
of the system with a monomer pair, we simulate the system
for a long amount of time �tinit�, before collecting a sequence
of reconnection times for a smaller time window �tcoll�. The

distribution of reconnection times thus obtained is shown in
Fig. 21.

There is a simple way to understand this reconnection
time distribution. When we have two connected monomers,
each will have its own monomer tree, with sizes �1 and �2,
respectively. Let us assume that these two trees are identi-
cally and independently distributed, each with the probability
distribution

p��� = �−ae−�/b. �2�

The above parameters a and b will be determined by fitting
the curve and may be slightly different from those for the
isolated monomer case. We further assume that, after two
monomers separate, each of them quickly independently
equilibrates in its own tree, and that the two trees touch at m
points in other swap clusters, where m is some fixed number
�i.e., does not scale with �1 and �2�.

Under these assumptions, at any given time, the probabil-
ity that the two monomers are adjacent is m / ��1�2�. The
probability that they reconnect for the first time at time 
 �an
integer� is thus

	1 −
m

�1�2


−1 m

�1�2
�

m

�1�2
e−m
/�1�2. �3�

Averaging over the distributions of �1 and �2, we get the
probability of first reconnecting at time 
 to be

� d�1� d�2p��1�p��2�
m

�1�2
e−m
/�1�2. �4�

Note that this is, by definition, the distribution of reconnec-
tion times for a monomer pair.

Performing saddle point approximations for both the �1
and �2 integrals in Eq. �4�, we find that the distribution of
reconnection times is proportional to


−�2a+1�/3 exp	−
3�m
�1/3

b2/3 
 . �5�

In Fig. 21, we see that the distribution is indeed fitted well
with such a stretched exponential, 
−� exp�−�
1/3�, with �
=1.13�0.04 and �=0.30�0.02. If we fit the single-
monomer distribution in Fig. 8 with Eq. �2�, we get a=1.4
and b=13; if we then assume m=1, we get �=1.27 and �
=0.54, which match the fitted values reasonably well, given
the approximations made.
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FIG. 21. �Color online� Distribution of reconnection times, fitted
to a stretched exponential, 
−� exp�−�
1/3�, with �=1.13�0.04 and
�=0.30�0.02.
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We may try to understand the anomalous diffusion of
monomer pairs in terms of sporadic swap moves and tunnel-
ing, separated by glide moves that do not contribute to large-
scale diffusion �separating out the glide moves that make up
the tunneling events from those that do not�. The reconnec-
tion time therefore behaves much like the waiting time for a
particle diffusing in a random potential landscape with traps
at each site, which separate succeeding hops. It is well
known that a waiting time distribution with a diverging av-
erage naturally leads to anomalous diffusion �29�. In our
case, however, the average of the reconnection-time distribu-
tion �a stretched exponential� is clearly finite. We therefore
conclude that the distribution of reconnection times that we
see in our simulations does not qualitatively explain the
anomalous diffusion of monomers.

We have also analyzed the correlation function of the
reconnection time sequences. For a given sequence
�
1 ,
2 ,
3 , . . . 
 of reconnection times, the correlation function
is defined to be

C�j� � �
i+j
i� − �
�2, �6�

C��� =
1

�M
�
j=1

M

ei��j−1�C�j� , �7�

where M is the maximum value of j, the correlation distance.
The correlation function in frequency space, as shown in Fig.
22 for two different collection time windows �values of
�tinit , tcoll
�, depends on the frequency as a power law. While
the prefactor of the correlation function depends on the time
window, the slope does not. In the frequency space, the cor-
relation function scales as

C��� � �−�1−
�, 
 = 0.14 � 0.01. �8�

This long-range correlation in reconnection times should be
related to the anomalous diffusion behavior of monomers. In
particular, it may be related to the probability of a monomer
pair revisiting its initial swap cluster. A quantitative under-
standing of this correlation, however, is still lacking.

VI. DIMER DIFFUSION AT FINITE MONOMER
DENSITIES

Our study of monomer diffusion suggests that coordinated
swap-tunneling motion of monomer pairs constitutes the ba-
sic mechanism for diffusion of monomer clusters. In this
section, we study diffusion of dimers at finite but low mono-
mer density and show that it can also be understood in terms
of monomer pairs.

The first question we need to address is, for a given
monomer density, what is the density of monomer pairs? Let
us define make the definition that two monomers form a pair
if they, with all other monomers fixed, can be made nearest
neighbors by glide moves of dimers. Clearly this is possible
if and only if two monomer trees touch each other at one or
more sites, as illustrated in Figs. 5 and 6.

A rough estimate of the probability that a second mono-
mer touches a given monomer tree can be obtained as fol-
lows. We first want to count the number of distinct neighbors
of the sites in the monomer tree. The site that the monomer
begins at has six neighbors. Each new site in the tree adds
five new neighbors �as one neighbor along the edge of the
tree has already been counted�. The new neighbors may not
all be distinct, since sites of the tree may have overlapping
neighbors not on the edges of the tree. Ignoring such over-
lapping cases, and using the fact that the average size of
monomer trees is 8.16, we get we have 6+5�7.16��42
neighbors. If we further assume that monomer positions are
independent and uncorrelated,6 then the probability that the
given monomer forms a pair with some other monomer is
1− �1−�m�42.

To test this simple estimate, we generate random configu-
rations at finite monomer densities using the pivot algorithm,
and count the total number of monomer pairs. As shown in
Fig. 23, the numerical results for the probability that a mono-
mer is in a pair agree well with this formula �never differing
by more than a factor of 2, even at the lowest density tested,
�m=0.0005�. A better fit, 1− �1−�m�60, also shown in Fig. 23,
can be obtained by varying the effective number of tree
neighbors.

6In Ref. �12� it was found that monomer-monomer correlations are
extremely short ranged, with a correlation length less than one lat-
tice step.
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FIG. 22. �Color online� Correlations between reconnection
times, in frequency space. The upper �green� curve is for
�tinit , tcoll
= �7.5�104 ,2.5�104
, while the lower �purple� curve is
for �tinit , tcoll
= �7.5�105 ,2.5�105
. tinit is the time used to equili-
brate, and tcoll is the time window for measurement. Both curves are
for L=250.
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FIG. 23. �Color online� Probability that a given monomer is
in a pair with some other monomer, as a function of the monomer
density. The lower curve is 1− �1−�m�42, and the upper curve is
1− �1−�m�60.
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We find that at a monomer density of around 2%, the
majority �about 70%� of monomers already form pairs. On
the other hand, at much lower monomer densities, the prob-
ability that a given monomer forms a pair with some other
monomer is linear in �m. Therefore for �m�0.02, the mono-
mer pair density scales as �m

2 , while for �m�0.02, the mono-
mer pair density scales as �m.

To study dimer diffusion, we generate equilibrium con-
figurations at a finite monomer density using the pivot algo-
rithm. We then evolve the system, keeping track of the value
of �x�i

2� for each dimer, summing over all dimers �including
those never moved� in the configuration, and averaging over
different configurations. A representative plot of results for
�m=0.004 is shown in Fig. 24. The short-time behavior �for
t�102� is dominated by glide moves of monomers on their
individual trees. At longer time scales �for 103� t�106�, we
find the scaling

�x�2� = kt�̃, �̃ = 0.47 � 0.02. �9�

We have also simulated monomer densities between 0.0005

and 0.015, and found that �̃ is roughly constant. For larger

�m, �̃ increases with �m, reaching 0.9 for �m=0.4.

We note that this dimer diffusion exponent �̃�0.47 mea-
sured at low �m equals the monomer diffusion exponent �
=0.46�0.06 found in Eq. �1� within numerical precision.
This supports our physical picture that diffusion of monomer
pairs is the dominating mechanism of large-scale transport.
At sufficiently low monomer densities ��m�0.02, for ex-
ample�, the monomer pair density is extremely low. Within
reasonable time scales, then, dimer pairs remain well sepa-
rated and do not touch each other. Hence we can treat the
diffusion of each monomer pair separately. As time evolves,
monomer pairs diffuse around their original positions. The
radius squared of the region that the monomer pair visits

scale as t�, according to our simulation of monomer diffu-
sion �Eq. �1��. If this region is compact �correct for 2D dif-
fusion problems�, the area of the region visited by a mono-
mer pair should scale with the same exponent. Note that only
dimers inside this region have moved. By contrast, dimers
outside these regions are frozen at this particular time scale.
Hence the system consists of growing “active” regions that
have been visited by the monomer pairs, surrounded by “in-
active” background. Thus the number of dimers that have
moved is the same as the total area of these active regions,
which scales as the total number of active regions multiplied
by t�. Consistent with this, we have verified that the number
of dimers moved scales as t�, for all monomer densities—a
representative plot is shown in Fig. 25. If we further assume
that dimers within each active region on average diffuse up
to distances of order of one, then this is also the scaling

behavior of dimer diffusion �x�2�, given by Eq. �9�, hence �̃
=�.

As a by-product, this argument also predicts that the co-
efficient k in Eq. �9� should be linear in monomer pair den-
sity. In Fig. 26 we plot both k, and the density of monomer
pairs, �m pair, as functions of �m, for low �m. We see that both
graphs are qualitatively similar. While both k and �m pair vary
by a factor of 100 as we vary �m from 0.0005 to 0.013, the
ratio between the two varies by less than a factor of 3. We
thus conclude that the variation of the monomer pair density
is primarily responsible for the variation of k, and that mono-
mer pairs are indeed responsible for large-scale transport of
dimers.

We have also looked at the averaged dimer displacement
�r�= ��x��� �rather than the average of displacement squared� at
finite monomer densities. We again focus on the behavior at
larger times, and fit the results to

�r� = ct�. �10�

Surprisingly, we find that � is very close to the monomer
diffusion exponent �, varying in the range 0.450�0.025, for
all monomer densities studied in the range of 0.0005	�m
	0.40. The equality of the exponent � with the exponent �
of Eq. �1� is expected for low �m, by the same arguments we
presented earlier. However, at higher monomer densities, we
find no reason why the exponent � in Eq. �10� should remain
unchanged—at these densities, most monomers form pairs
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FIG. 24. �Color online� Average dimer displacement squared
scales as �x�2�=kt0.47, averaging over both configurations and
dimers, for a 241�241 system with �m=0.004.
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FIG. 25. �Color online� Fraction of dimers that have moved
at least once, as a function of time, for a 241�241 system with
�m=0.004.
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FIG. 26. �Color online� Coefficient k in �x�2�=kt�̃ for diffusion of
dimers �squares, left axis� and density of monomer pairs, �m pair

�diamonds, right axis�, each as a function of monomer density �m.
The ratio between these two quantities is roughly constant, varying
by a factor less than 3, while �m changes by two orders of
magnitude.
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and the physical picture where the space consists of isolated
active regions embedded in an inactive background, is no
longer valid. Most dimers end up moving by the onset of
anomalous diffusion of dimers. Probably even more puzzling
is that the coefficient c in Eq. �10� is linear in �m over three
decades in �m, as shown in Fig. 27. The best-fit line on a
log-log scale has a slope of 0.992�0.013, indicating a linear
dependence of c on �m. An understanding of this scaling
behavior is lacking.

VII. CONCLUSION

In this work we have studied anomalous diffusion of
monomers and dimers in the triangular-lattice dimer model,

subject to the constraints that dimers cannot rotate and that
each site can be occupied by only one dimer. We have iden-
tified monomer pairs as the basic degree of freedom for
large-scale transport of monomers and dimers, and have pro-
posed a swap-tunneling mechanism that involves a subtle
interplay between swap moves and glide moves. A quantita-
tive understanding of the anomalous exponent for monomer
diffusion, however, remains elusive. It will be interesting to
further explore whether this intricate vacancy dynamics is
relevant to vacancy diffusion in glassy systems as well as in
densely packed granular aggregates. Finally, we note that our
model exhibits no equilibrium jamming transition at finite
monomer density: As long as monomer density is finite,
there is always probability 1 to find two-monomer clusters
�as well as larger clusters� in an infinite system. According to
the results of our work, then, dimers always diffuse anoma-
lously as Eq. �9�, at time scales longer than 103. At even
longer time scales, monomer clusters with large sizes come
into effect and dimers may eventually diffuse normally.
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FIG. 27. Coefficient c in �r�=ct� for dimer diffusion, averaging
over dimers and over configurations, at long times, as a function of
monomer density. The straight line fit has a slope of 0.992�0.013.
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